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Discontinuous Automorphisms of the Proper Galilei 
and Euclidean Groups 
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It is shown that discontinuous automorphisms of  the proper Galilei and 
Euclidean groups (i.e., without space inversions) exist in three dimensions, but 
not in higher dimensions. 

1. INTRODUCTION 

There is a vast literature in mathematical physics and algebra on 
automorphisms of classical groups. See, for instance, the expository articles 
by Levy-Leblond (1971) and O'Meara (1971). Levy-Leblond (1971) posed 
the problem of finding the abstract automorphisms of the proper Galilei 
group; that is, of the Galilei group without space inversions. Adeleke (1980) 
also sought the solution of the problem for the proper Euclidean group, in 
the same paper, Adeleke used the partial solutions obtained to unify several 
theories of symmetry in mechanics. The theory of symmetry in mechanics 
plays an important role in determining the response of materials to stretches; 
that is, in determining their constitutive equations. 

Besides this, Marmo and Whiston (1972) indicated other uses of the 
determination of the automorphisms of the Galilei and Euclidean groups. 
They also showed that if inversions are included, all the automorphisms of 
the Galilei group are continuous. Before this work, Michel (1967) had 
shown the same result in the relativistic case. Furthermore, the paper of 
Adeleke (1982) showed that discontinuous automorphisms of the proper 
Galilei group exist if and only if they exist for the Euclidean group in three 
dimensions. It becomes clear that Levy-Leblond (1971) excluded space 
inversions in his definition of the proper Galilei group if one considers his 
Section II.D. 
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In this paper, I show that there are numerous discontinuous automorph- 
isms of the three-dimensional Euclidean group and thus of the Galilei 
group, as numerous as the subsets of the real numbers, 22~~ to be exact. 
These automorphisms arise from the derivations of the field of  real numbers. 
Tits (1970, Section 11.3) gave an example of  a discontinuous automorphism 
for the semidirect product of the general linear group G L , ( K )  in n 
dimensions with the additive group of n x n matrices. I observe below that 
if one uses the quaternion representation of the rotations and the form of 
Tits' example, one obtains discontinuous automorphisms of the Euclidean 
group in three dimensions. This is the main contribution in the part of  this 
work which deals with the construction of discontinuous automorphisms. 
Besides this, however, I show that all automorphisms of the Euclidean 
group in higher dimensions are continuous. The main results are stated 
precisely in Section 2. Section 3 contains the notations and definitions; 
Section 4 contains the proofs of the results in dimension 3, while Section 
5 deals with higher dimensions. 

2. RESULTS 

See Section 3 for details of notations. 

Theorem 1. Let ~ be the Euclidean group in three dimensions with 
no space inversions, and let ~ be the corresponding Galilei group. Then 
~ -  and ~q both have discontinuous automorphisms. 

Theorem 2. For n-> 4, all automorphisms of ~+ are continuous. 

Theorem 3. The cardinality of the set of all discontinuous automorph- 
isms of ~ -  is 22~~ where No is the cardinality of the s~et of all integers. 
(Note that 2 uo is the cardinality of the set of all real numbers, and 22~~ is 
the cardinality of  the collection of all subsets of the set of  real numbers.) 

Lemma 1. All discontinuous automorphisms of ~ -  arise from deriva- 
tions of R. 

Every such automorphism is a composite function B. A, where: 

(2.1)(i). We have 

([~], a) ~ ([~], ~ d(~)+a) 

([~j], a) '~ 
~ ' ~  ([~1o~o ], ko~oa~o + ~lobo~lo - bo) 

(2.1)(ii). [~] is a (quaternion representation of a) rotation; a c •3; bo is 
a fixed constant in R3; [00] is a fixed rotation; and ko is a fixed, nonzero 
constant in R. 
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(2.1)(iii). d is a derivation of R. 
(2.1)(iv). Composition is read from right to left in B. A and below. 

Lemma 2. All discontinuous automorphisms of ~ also arise from 
derivations of  R. Every such automorphism is a composite function C-D,  
where, in addition to (2.1)(ii) and (2.1)(iii) above, we have the following: 

(2.1)(v). We have 

[(~], v, a , t )  ~ ([~], v, ~ d(~) +a ,  t) 

([{], v, a,  t) ~ (['qo{TIo ], ko'qoVTIo + "qo{bo~TIo - "qoboTIo, 

poko'qoaTio + qo'qoVTlo- ko trlomo'~o 

+ "qo{ro~TIo - "qorofio, kot) 

where Po is a fixed nonzero constant in R, qo is a fixed constant in R, and 
too, ro are fixed in R 3. 

3. NOTATIONS AND DEFINITIONS 

Let ~,+ denote the set of all rotations with determinant 1 in the n- 
dimensional Euclidean space R", ~ denote the Euclidean group in n 
dimensions, and ~J the Galilei group. So, 

{7,+ = {R[RR T = 1, det R = 1} 

~.+ = {(K c)lRc ~+, cc R "} 

~ =  {(R, v, a, t)lR~ 0~+, v, aER 3, tER} 

The operations on ~+ and ~ are, respectively, 

(r,  e)(K e) = (RK r~+c)  
(3.1) 

(R, v, a, t)(R, ~, i ,  t-) = (RR, Rrr + v, R ~ +  a +v?, t +  t-) 

The map d : K ~ K  is a derivation on a field K (Lang, 1965, Chapter 
X.7) if 

d(x + y) = d(x) + d(y) (3.2a) 

d(xy)=d(x)y+xd(y)  Vx, y c K  (3.2b) 

By using (3.2b), one deduces that d(1) -- 0. For K = •, one can conclude that 

d(q) = 0 Vq e Q (3.3) 

where Q is the set of  all rational numbers. Proposition 10 in Chapter X of 
Lang, (1965) shows the existence of nonnull derivations. 
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Q u a t e r n i o n  R e p r e s e n t a t i o n  o f  the  R o t a t i o n s  

The quaternion representation of rotations is explained in many books. 
Let R: = R~ be a three-dimensional rotation with axis e and angle p measured 
positively in the right-corkscrew direction. If  e = e l i+  e2j+ e3k and e. e = 1, 
the quaternion representation is 

R ;  ~ [6 ]  = [{  + 6}  (3 .4 )  

where ~=cos�89189 If 6 = ~ o + f ~ i + f 2 j + f 3 k  is a unit 
quaternion, then ~ = f o -  f l i -  f : j  - f3k. We also have 

i 2 = j2 = k :  = - 1, i j  = k = - j i  

jk = i = - k  j, k i  = j = - i k  
(3.5) 

6 6 = 6 g = r  2 2 ~ + ~2 + ~3 = 1 

where v ~ R 3. 

Definition. Let d be a derivation of R, and let 11 = ~7o+ Y/li+ "q2j+ ~3 k 
be a quaternion which is not necessarily unit. Define 

d(l]) : = d ('r/o) + d ('f}l)i+ d(r/2)j  + d (r/3)k (3.6) 

Then, 

d(-~) = d(rl) (3.7a) 

d('q+{) = d('q) + d({) (3.7b) 

d (~l{) = d (~l){ + ~ld ({) (3.7c) 

"0d(~l) = i(rlad (rlo) - rlod (~1) + rl3d (~72) - ~2d (~73)) 

+ j(r/zd (~o) - ~7od (~/2) + ~7, d (~3) - T/3d ('K/l)) 

+k(rl3d(rlo)-rlod(rl3)+rl2d(rh)-rhd(rl=)) (3.7d) 

after using (3.3). 

4. AUTOMORPHISMS IN SPACE DIMENSION 3 

Theorem 4. Let ~ -  be the Euclidean group in three dimensions with 
no space inversions, and let ~ be the corresponding Galilei group. Then 
~ -  and ~ b o t h  have discontinuous automorphisms. 

Proof Using quaternion representation, we have 

( [ 6 ] ,  a ) ( [~ l ] ,  b) = ([6~1], 6 b ~ +  a) 

Let d be a nonnull derivation of R. Define map A: 

([6], a) ~ ([6], 6d(~)+a)  V([6], a) e g'~- (4.1) 
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Then A: ~ ~-~ ~f~" in view of (3.7d). It can be easily verified that A is an 
automorphism. Since d is nonnull, it can be checked that ~d(~) is not 
identically zero for all ~. The function ~d(~) is not identically zero for all 
~:. The function ~d(~) is thus discontinuous, it being zero for ~ with rational 
components. 

Similarly define map C: 

([~], v, a, t) c~-> ([~], v, ~d(~) + a, t) V([tj], v, a, t) ~ ~ 

Then C is a discontinuous automorphism of ~ I .  

As stated in the introduction, the form of  A in the proof  of  the last 
theorem is the form of a discontinuous map constructed by Tits (1970, 
Remark 11.3) for a different group. 

Proof of Lemma 1. The statement of Lemma 1 is in Section 2 above. 
In this proof, we shall denote rotations by R as well as by its quaternion 
representation. This is for convenience. Details regarding this are in 
Section 3. 

Let C: ~-~-> ~ -  be a discontinuous automorphism. From Lemmas 
3.1 and 3.2 in Adeleke (1980), we deduce that there exists a continuous 
automorphism D such that 

(1, z), p c  (1, z) (4.2) 

(R~, 0), pc (R~, R%m(e, a)  - m(e, a)  + r (e, a)e) 

where m(e, a ) .  e = 0. Composition of maps is read from right to left. If  we 
use the fact that (Re,  0) and (R%, 0) commute, we obtain re(e, a )  = m(e, ~r). 
Let i, j, and k be unit vectors in the x, y, and z directions, respectively. 
Commutativity of R~, R~,  and R k also implies that 

m(i, ~-) = m(j, ~,) = m(k, r = mo (say) 

Therefore, if e is i, j, or k, we have 

(R%, 0),~DC (a%, ~b(e, a)e) 

(1, z),~DC (1, z) 

where E is an inner automorphism 

E:  x ~-> (1, mo)x(1 , -mo) ,  x~  ~ -  

for all x ~ ~3- Define A: = EDC. If R = R g , let S be a rotation for which 
Se = g. Then 

SR%S T =R~ (4.3) 



474 Adeleke 

If we use definition (4.2) and (4:3) to compute the image of (R g, 0), we 
arrive at ~b(e, 0") = ~b(g, 0"). Hence th = th(a). Now the image under A of 
the equation 

gives 

(Rea,+a2, 0) = (Re t ,  0)(Re~2, 0) 

(~ (OL1 + 0'2) = ~b(0"l ) '1- (~ (0"2) (4.4) 

Furthermore, since (Rq~, 0) has finite order for every q c Q, its image satisfies 

q5 (q~r) = 0 (4.5) 

Define d: [ -1 ,  1] -> ~ by 

d(cos 10") = (sin la)dp(a) 
If C0S10"1=C0810"2, then �89 and so sinl0"l = +sin�89 and 
~b(�89 = + t,b(10"2) after using (4.4) and ~b(O)=0. It follows then that d is 
well defined. With this definition, we have 

([Go + iG1 ], O) A~-~ ([Go + iG1], ~ f )  i)  

if ~:o+iGl # 1. 
I now show that d can be extended so that it becomes a derivation of 

R. The image under A of the equation 

([Go + iG1 ], O)([G] + iGo], O) -- ( [0+  i], O) 

gives 

d(r -d(r 
- -  - - -  ( 4 . 6 )  

G1 Go 
if G0 r 0 r G1. The image under A of the equation 

([Go+ iG, ], O ) ( [ % + j n l  ], O) = ([Gono + i~:, no + jGo.r/i-{- kGl.r/, ], O) 

gives 

d(Go) 
i + [ j(G2o-- G12) + k(2GoG1)] d(r/~ 

GI ~71 

d(Gono) iG, no+jGonl+kG, n, 
= (  1 -  c2-2a'/2so,to, (1 - Go2n~) '/2 + c  

where e is perpendicular to the other term on the right-hand side. 
B y  taking components, one can deduce that 

d(Go~o) = r/od(Go) + God(~/o) (4.7) 

This result also holds i f  any of Go and 7/o is zero. 
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The image, under A, also of 

([Go + i~l ], 0)(['Oo + i~/l ], 0) = ([ ~or/o- ~, r/l + i(~:0 W ~ + ~:, ~7o)], 0) 

gives 
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d ( r 1 6 2  d(r d(no) 
- -  ~ - -  ( 4 . 8 )  

~:0~1 -[- ~IT]0 ~1 711 

However, using (4.7), we obtain 

a(~o~o)- ~(~,~,) = a(~o)~o+ ~o ~(~o)-  ~1 a ( ~ x ) -  a(#,)~,  

= a(~o) (~o~1 + ~1,7o) + a(~o)m (~om + ~,~o) 

after using (4.6). Statement (4.8) therefore implies 

a(~o~o- ~,~, ) = d(~o~o) - a (# l , ,  ) 

and so 
d (Xl + x2 ) = d (x~) + d (x2) (4.9) 

for x~, x2 in a small neighborhood N of 0. The restriction to a small 
neighborhood of 0 is because of the restriction of the range of (~:o~/o, ~:1~7~ ). 

If Ixl[, Ix21, and [Xl+X2[ are less than 1, there exists r :=cos  per for 
some p c Q  such that rxl, rx2, r(xl + x2)E N. Since d(rxi) = rd(xi),  i = 1, 2, 
and d ( r ( x l + x 2 ) ) =  rd(Xl+X2) from (4.5) and (4.7), then (4.9) is valid for 
x~, x2~ [-1 ,  1] as long as x~+x26 [-1,  1]. 

If Xa, x2c [ -1 ,  1] and x~+x2> 1, say, then xl and x2 are positive and 
x ~ - l / 2 ,  x 2 - 1 / 2 ,  x~+x2-1  c [-1,  1]. Then, from (4.9), 

d(xa + x 2 -  1) = d(xa - 1/2) + d ( x 2 - 1 / 2 )  

= d(x , )  + d(x2) 

using (4.5) and again (4.9). Similarly, 

d(x,  + x2 + 1) = d(Xl ) + d(x2) 

i f x l , x 2 e [ - 1 ,  1] ~md x l + x 2 < - l .  Now, extend d:R-->R by 

d ( n + x ) = d ( x ) ,  x c  [ -1 ,  1], no7/ 

With the comments of the earlier part of this section, and results (4.9) and 
(4.7), it is routine to prove 

d(xi W x2) = d(x l )+ d(x2) (4.10) 

d (x l x2 )=x ld ( x2 )+x2d (x~ )  VXl ,X2SN 

Hence, d is a derivation of R. 
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Since the automorphism A has the same effect on (R~, 0) for e = i, j, 
or k and a e R  as that of a typical automorphism of form (4.1), and 
since Ri,, R~, and R~ generate 03,  then A is of the form (4.1). Define 
B: = (ED) -1. So, C = BA. �9 

Proof of Lemma 2. As stated in the introduction, it was shown by 
Adeleke (1982) that discontinuous automorphisms exist for ~J if and only 
if they exist for ~-.  With Lemma 1, we can conclude from the body of 
proof  of the Theorem in Adeleke (1982) that Lemma 2 holds. �9 

Theorem 5. The cardinality of the set of all discontinuous automorph- 
isms of ~ -  is 22~~ 

Proof Let T be a transcendental basis of  ~ over Q (Lang, Chapter X, 
1965). For every function f :  T ~ R, there exists a unique derivation d: R -~ R 
such that d ( 4 ) = f ( 4 )  for all 4~ T. 

I now indicate how this result follows from Theorem 7 and Proposition 
10 of Chapter X of Lang (1965). For every s ~ R, let d(s) be defined from 
the monic irreducible polynomial of s over Q(T)  as indicated in Lang, 
(1965). Let an arbitrary pair Sl, s2cR be given and let A be the set 
{st, s2, sl + s2, sls2}. Then the coefficients of the monic irreducible poly- 
nomial over Q(T)  of each element of A are contained in Q (4 ,  t 2 , . . . ,  4)  
for some finite t~ , . . . ,  4 ~ T. Le t f ( t l  ) . . . .  , f ( 4  ) be contained in an algebraic 
extension K of Q(G, t 2 , . . . ,  t r ) ( t r§  tm ) for some 4§  tm distinct 
from 4,  �9 �9 �9 tr. According to the said Proposition 10, there exists a derivation 
d of K such that d(t i )=f( t l ) ,  i = 1 , . . . ,  r, and d ( t j ) = O , j = r + l , . . . ,  m. 
The values of d for elements of A are also determined from their irreducible 
polynomials. By this construction, d and d are the same on A. Hence, 
equations (3.2) are satisfied by d for x = s,,  y = s2. One then concludes that 
d is a derivation. That d is unique comes from T being a basis. 

If  S={f[f:T-->R} and ~ is the set of all derivations of R, then the 
cardinality IS[ of S is equal to the cardinality [~[ of ~ by the above 
arguments. If T is countable, then Q(T)  is countable. Since R is algebraic 
over Q(T) ,  it would mean that R is countable, which is a contradiction. 
Hence, [T[ > No. Moreover, we then have IT[ = IQ(T)I = [g~[ = 2~~ Hence, 
using the notation of Halmos (1974), we have 

I s l  = Ir l = 2 

By the Theorem in Adeleke (1980), every continuous automorphism 
of  ~;~ is of the form 

B: (R, c ) ~  (RoRRo r ,  aRoe+RoRRorbo-b0) 

where Ro is some rotation, bo is a vector in R 3, and a is a nonzero number. 
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This, with Lemma 1 and the result on IS] above, concludes the proof  of 
this lemma. �9 

5. AUTOMORPHISMS IN HIGHER DIMENSIONS 

I first introduce some notations and definitions. Let 

K:  = { e l , e z , . . . , e n }  

be a given fixed orthonormal basis in R'. Let i,j, and k be distinct indices 
in {1, 2 , . . . ,  n)}. The symbol Rij stands for the (n - 2 ,  2) involution for which 

el if i ~ l ~ j  
R;je/= - e l  if l = i o r j  

An r-rotation ( r -  < n) is a rotation in ~7, + which fixes all e~ except possibly 
r of them. Let ~0k: = {Sok } denote the set of rotations of order 2 which fix 
all em except possibly ei, e j, ek. 

The following lemma is essentially an extension of Lemma 3.1 in 
Adeleke (1980) for n = 3. 

L e m m a  3. Let n > 4. Gi.ven an automorphism D: ~+-* ~f~+, there exists 
a continuous automorphism B of ~+ such that 

(1, d)* s o  (1, d) 

(R~j, 0), so) (R0, 0) (5.1) 

(n,  0. so) (R, c(R)), R ~  + 

where c(R) is a function of R. 
Proof. Define 

U: = {(R, d) ~ ~+I~r d)) c C((R, d))} 

C~(X): = {y - l xy l y  E c~+} 

C(x):  = {y e ~+~[yx = xy} 

i.e., (r and C ( x )  denote the conjugacy class and centralizer subgroup 
of x in ~ ,  respectively. Then U = {(1, b)lb ~ R"}, and is thus an invariant 
subgroup. The method of proof  in the case n = 3 in Lemma 3.1 of  Adeleke 
(1980) then applies exactly to this case and yields 

(1, b) • (1, aRob) 

(R, O) ~ (RoRR~, e(R)) 
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for some Ro c ~,+ and a c R, a # 0. So there exists a continuous automorph- 
ism E such that 

(1, d), ED) (1, d) 

(a, 0), ED) (it, a(It)) 
Note that {R12,R23,. . . ,R,_~, ,} generates {Rig}. Suppose (ED)-  

((R0,0)) =( i to ,  big). Commutativity of Ru, Rjt shows that we can write 
b 0 = bi+dj  for some b ~ , . . . ,  b~. Let F be the continuous automorphism 
defined by 

F 
x c  ~ ~-> (1 , -z0)x(1 ,  Zo) 

Zo=�89 �9 " " +b,  ) 
Then 

(1, d)F~% (1, d) 

(a, 0)FE~ (It, c(R)) 

(it,j, 0) ~E~ (aij, 0) 
for some function c(R). Put B: = FE. �9 

Theorem 6. If n-> 4, all automorphisms of ~+ are continuous. 

Proof. Let D be an automorphism of ~+ and let B be the continuous 
automorphism satisfying (5.1). If $123 ~ ~23, and (BD)(($123,0)) = ($123, z), 
then S123z=-z,  since $123 is of order 2. So, z is a linear combination of 
el,  e2, and e3 from the definition of ~23. Consequently, R12R34z = -z .  

On the other hand, the product R12R34 commutes with S~23. Hence, 
their images (R12R3g, 0) and (S~23, z) commute. Thus, RlzR34z = z. This, with 
the last equation in the previous paragraph above, shows z = 0; and so, 

(S123,0)' BD (S123,0) 

By similar reasoning, we infer that BD fixes any (Suk, 0). 
From well-known results on rotations [see, e.g., Adeleke (1980), 

equation (3.14)], we deduce that BD((R, 0 ) )=  (R, 0) for every 3-rotation. 
Since the set of all k-rotations generates the (k+l ) - ro ta t ions ,  we see by 
induction that BD((R, 0 ) ) = ( R ,  0) for all R e ~  +. Hence BD is the 
identity. �9 
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